skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Zhaoxiangrui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Community Earth System Model version 1 (CESM1) and version 2 (CESM2)'s abilities to simulate the impacts of Atlantic multidecadal variability (AMV) and Pacific multidecadal variability (PMV) on South American precipitation and temperature have not been assessed, and how the AMV and PMV modulate each other's influences on South American climate is not well understood. Here we use observations, reanalyses, and CESM1 and CESM2 simulations from 1920 to 2015 to study those problems. The models can reproduce the observed precipitation and temperature responses to AMV well, but can only roughly reproduce such responses to PMV. The precipitation response over the South Atlantic convergence zone (SACZ) is better simulated by CESM2 compared to CESM1, which is associated with an improved horizontal moisture flux over this region. However, the models cannot accurately simulate the observed differences between the influences of Pacific interannual and multidecadal variability on South American precipitation and temperature. The impacts of AMV and PMV on South American precipitation are modulated by the other mode via changes in horizontal moisture flux over the SACZ and River Plate basin in summer, as well as changes in vertical motion over the equatorial regions in winter. Similarly, the impacts of AMV and PMV on South American temperature are also modulated by the other mode. Over water‐limited regions, such as northeastern Brazil and southern Argentina, the precipitation and temperature responses are anti‐correlated, possibly via surface evaporation. 
    more » « less
  2. Abstract The Atlantic multidecadal variability (AMV) and Pacific multidecadal variability (PMV) can influence Arctic sea ice and modulate its trend, but to what extent the AMV and PMV can affect Arctic sea ice and which processes are dominant are not well understood. Here, we analyze the Community Earth System Model, version 1, idealized and time-varying pacemaker ensemble simulations to investigate these issues. These experiments show that the sea ice concentration varies mainly over the marginal Arctic Ocean, while the sea ice thickness variations occur over the entire Arctic Ocean. The internal components of AMV and PMV can enhance or weaken the decadal sea ice loss rates over the marginal Arctic Ocean by more than 50%. The AMV- or PMV-induced anomalous atmospheric energy transport and downward longwave radiation related to low clouds (thermodynamical processes) and sea ice motion (dynamical processes) contribute to the Arctic surface air temperature and sea ice concentration and thickness changes. Anomalous oceanic heat flux is mainly a response to rather than a cause of sea ice variations. The dynamic processes contribute to the winter Arctic sea ice variations as much as the thermodynamic processes, but they contribute less (more) to the summer Arctic sea ice variability than the thermodynamic processes over the marginal Arctic Ocean (parts of the central Arctic Ocean). Sea ice loss enhances air–sea heat fluxes, which cause oceanic heat convergence and warm near-surface air and the lower troposphere, which in turn melt more sea ice. 
    more » « less
  3. Abstract South American climate is influenced by both Atlantic multidecadal variability (AMV) and Pacific multidecadal variability (PMV). But how they jointly affect South American precipitation and surface air temperature is not well understood. Here we analyze composite anomalies to quantify their combined impacts using observations and reanalysis data. During an AMV warm (cold) phase, PMV-induced JJA precipitation anomalies are more positive (negative) over 0°-10°S and southeastern South America, but more negative (positive) over the northern Amazon and central Brazil. PMV-induced precipitation anomalies in DJF are more positive (negative) over Northeast Brazil and southeastern South America during the warm (cold) AMV phase, but more negative (positive) over the central Amazon Basin and central-eastern Brazil. PMV’s impact on AMV-induced precipitation anomalies shows similar dipole patterns. The precipitation changes result from perturbations of the local Hadley and Walker Circulations. In JJA, PMV- and AMV-induced temperature anomalies are more positive (negative) over entire South America when the other basin is in a warm (cold) phase, but in DJF temperature anomalies are more positive (negative) only over the central Andes and central-eastern Brazil and more negative (positive) over southeastern South America and Patagonia. Over central Brazil in JJA and southern Bolivia and northern Argentina in DJF, the temperature and precipitation anomalies are negatively correlated. Our results show that the influence of Pacific and Atlantic multidecadal variability need to be considered jointly, as significant departures from the mean AMV or PMV fingerprint can occur during a cold or warm phase of the other basin’s mode. 
    more » « less